

Ch4-Barres en traction

0-Cours

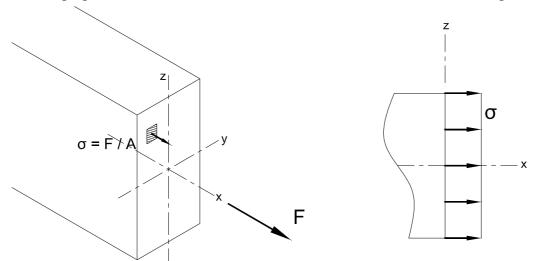
1.	\mathbf{C}	omportement de l'acier en traction	. 2
		Essai de traction.	
		Analyse du graphique $\sigma = f(\varepsilon)$.	
		Acier de construction selon la norme NF EN10025-2.	
	1.4.	Résistance d'une barre tendue.	. 3
2.	R	ésistance d'une barre tendue selon l'Eurocode 3	. 3
	2.1.	Principe de vérification général en résistance.	. 3
		Résistance en traction.	
	2.3.	Exemple	. 4
	2.4.	Cas d'une cornière attachée par une seule aile.	. 5

E4 / Ch4 / 0-Cours BTS AMCR

1. Comportement de l'acier en traction.

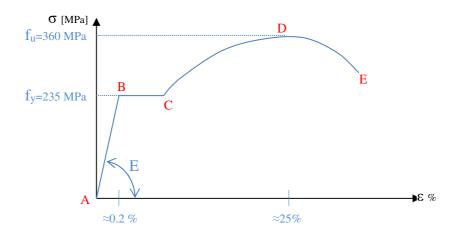
1.1. Essai de traction.

L'essai permet de mettre en traction une éprouvette de dimensions normalisées (longueur L_0 , aire de la section A).


Au cours de l'essai, on mesure la force de traction F en kN et la déformation ΔL en mm correspondante qui sont reportées sur un graphique $F = f(\Delta L)$.

On déduit des mesures des caractéristiques mécaniques de l'acier qui pourront être utilisées quelles que soient les dimensions de l'élément.

On calcule donc:


 \rightarrow La contrainte $\sigma=\frac{F}{A}$ représentant la force par unité de surface, exprimée en N/mm² ou MPa (1 MPa = 10^3 kN/m²)

Cette contrainte est perpendiculaire à la section (contrainte normale) et uniformément répartie.

 \rightarrow L'allongement $\epsilon = \frac{\Delta L}{L_0} * 100$ représentant le % d'allongement.

On trace le graphique $\sigma = f(\varepsilon)$, comme l'exemple qui suit :

E4 / Ch4 / 0-Cours BTS AMCR

1.2. Analyse du graphique $\sigma = f(\varepsilon)$.

Zone AB <u>Comportement élastique</u>: l'allongement est proportionnel à la contrainte et réversible (si on relâche l'effort, l'acier reprend sa forme initiale).

La fin du comportement élastique est marquée par la limite élastique f_y , qui correspond à un allongement $\epsilon_v \approx 0.2\%$.

La proportionnalité entre σ et ϵ se traduit par la loi de Hooke : $\sigma = E * \epsilon$ où E est le module élastique ou module d'Young, qui vaut 210000 MPa quelque soit le type d'acier.

Zone BC <u>Palier de plasticité</u>: l'acier se déforme fortement sans augmentation de contrainte, on parle « d'écoulement plastique ».

Zone CD Zone de déformation plastique répartie : l'acier se « raffermit », la contrainte augmente jusqu'à atteindre une valeur maximale de rupture f_u . Les déformations sont très importantes $(\epsilon_u \approx 25\% \text{ de L}_0)$, réparties tout au long de l'élément et non proportionnelles à la contrainte.

Zone DE Zone de striction: la section diminue localement jusqu'à ce que l'acier se casse en 2.

1.3. Acier de construction selon la norme NF EN10025-2.

	Epaisseur t ≤ 40 mm		
Nuance	f _y [MPa]	f _u [MPa]	
S235	235	360	
S275	275	430	
S355	355	490	
S460	460	550	

Exigences réglementaires pour les aciers de construction :

- \rightarrow f_u / f_y \geq 1,10
- → Allongement à la rupture supérieur ou égal à 15 %
- $\rightarrow \epsilon_u \ge 15\epsilon_y$

1.4. Résistance d'une barre tendue.

Pour une barre tendue de section A et d'acier de nuance connue, on est capable de déterminer :

- \rightarrow Sa résistance à la rupture : $N_u = A*f_u$
- \rightarrow Sa résistance plastique (lorsque la contrainte est à f_v): $N_{pl} = A^* f_v$

2. Résistance d'une barre tendue selon l'Eurocode 3

2.1. Principe de vérification général en résistance.

L'Eurocode a pour rôle de définir la valeur limite de résistance admissible pour une section, notée avec un indice R_d (Resistance Design).

On compare donc l'effort réel dans la barre, noté avec un indice E_d (Effect Design) à cet effort Rd. Il faut donc vérifier que :

$$E_d \leq R_d$$
 Ou exprimé autrement
$$E_d$$

$$\frac{E_{d}}{R_{d}} \le 1$$

E4 / Ch4 / 0-Cours BTS AMCR

2.2. Résistance en traction.

Définie dans l'Eurocode 3, partie 1.1, paragraphe 6.2.3, noté EC3-1.1-§6.2.3 Critère à vérifier :

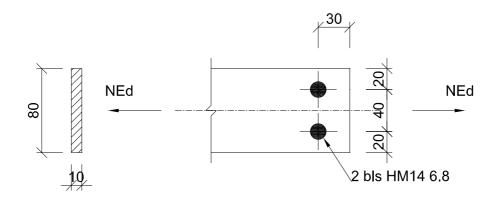
$$\frac{N_{Ed}}{N_{t,Rd}} \leq 1$$

N_{Ed} → effort de traction réel dans l'élément (dépend du projet, des charges...)

 $N_{t,Rd} \rightarrow$ effort limite de traction admissible (dépend uniquement de la barre et de l'acier)

$$N_{t,Rd} = \min[N_{pl,Rd}; N_{u,Rd}]$$

Effort plastique
$$N_{pl,Rd} = \frac{A.f_y}{\gamma_{M0}} \rightarrow \gamma_{M0} = 1$$
 (coefficient de sécurité utilisé avec f_y)


Effort ultime $N_{u,Rd} = \frac{0.9.A_{net}.f_u}{\gamma_{M2}} \rightarrow \gamma_{M2} = 1.25$ (coefficient de sécurité utilisé avec f_u)

Pour une barre, on nomme section nette l'aire d'une section comportant des trous et section brute l'aire d'une section pleine.

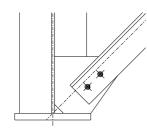
2.3. Exemple.

Plat 80*10 en S235 Boulons HM14 \rightarrow perçage à d₀=15 mm $N_{Ed} = 110.00 \text{ kN}$

E4 / Ch4 / 0-Cours BTS AMCR

Critère EC3-1.1-§6.2.3:

$$\frac{N_{Ed}}{N_{t,Rd}} \le 1$$


$$N_{Ed} = 110.00 \text{ kN}$$

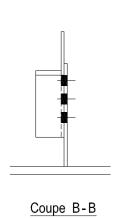
$$\begin{split} N_{t,Rd} &= min \big[N_{pl,Rd}; N_{u,Rd} \big] = 129.60 \text{ kN} \\ N_{pl,Rd} &= \frac{A.f_y}{\gamma_{M0}} = \frac{800*10^{-6}*235*10^3}{1} = 188.00 \text{ kN} \\ N_{u,Rd} &= \frac{0.9.A_{net}.f_u}{\gamma_{M2}} = \frac{0.9*500*10^{-6}*360*10^3}{1.25} = 129.60 \text{ kN} \\ A &= 80*10 = 800 \text{ mm}^2 \\ A_{net} &= 800 - 2*15*10 = 500 \text{ mm}^2 \end{split}$$

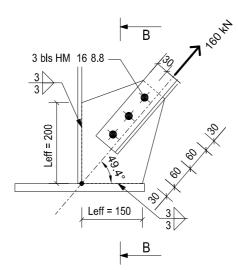
$$\frac{N_{Ed}}{N_{t,Rd}} = \frac{110.00}{129.60} = 0.85 < 1 \rightarrow \text{v\'erifi\'e}$$

On dit que la section « travaille » à 85%

2.4. Cas d'une cornière attachée par une seule aile.

Dans le cas des cornières attachées par 1 seule aile, le coef de 0.9 de N_{u,Rd} est remplacé par un coef β qui dépend du nombre de boulons, du pas p_1 et du diamètre du trou d_0 (voir p213 du Doc AMCR).


Tableau 3.8 - Coefficients réducteurs B2 et B3


Entraxe	p_1	≤ 2,5 d _o	≥ 5,0 d _o
2 boulons	β_2	0,4	0,7
3 boulons ou plus	β_3	0,5	0,7

- 2 boulons:
$$\beta_2 = 0.4 + \frac{0.3}{2.5 * d_0} * (p_1 - 2.5 * d_0)$$

Lorsque
$$2.5 * d_0 < p_1 < 5 * d_0$$
 on fait une interpolation linéaire qui vaut :
$$- 2 \text{ boulons} : \beta_2 = 0.4 + \frac{0.3}{2.5*d_0} * (p_1 - 2.5 * d_0)$$

$$- 3 \text{ boulons} : \beta_3 = 0.5 + \frac{0.2}{2.5*d_0} * (p_1 - 2.5 * d_0)$$

Exemple.

3 boulons : β_3 : 2.5*d₀=2.5*18=45 < 60 < 5*d₀=5*18=90 \Rightarrow β_3 = 0.5+ $\frac{0.2}{2.5*18}$ *(60-2.5*18) = 0.57