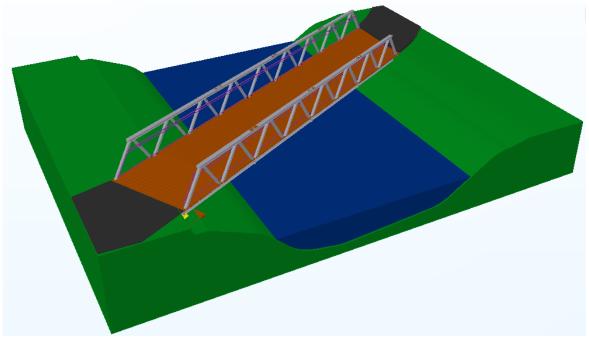


Révisions - Méca

TD Passerelle treillis corrigé

1. Présentation du projet.


On souhaite construire une passerelle cyclable et piétonne pour franchir une rivière.

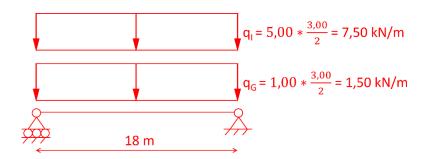
Dimensions:

Portée 18mLarguer 3m

Charges permanentes: 1.00 kN/m² Charge d'exploitation: 5,00 kN/m²

Charges de neige incompatible avec les charges d'exploitation.

La passerelle est composée de 2 poutres treillis reliées par des traverses permettant de supporter un platelage bois.


Pour des questions de sécurité des cyclistes circulant sur la passerelle, la hauteur du garde-corps est portée à 1.20 m.

2. Travail demandé.

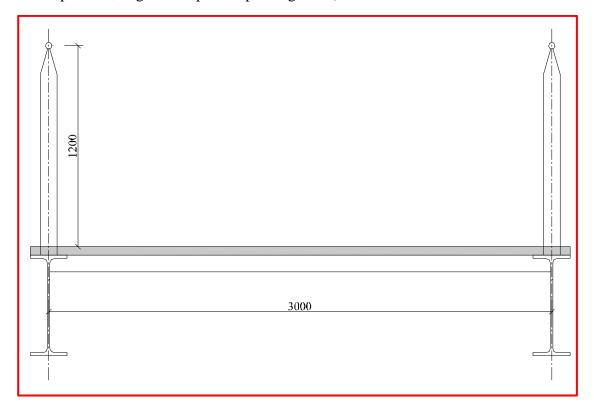
2.1. Poutre en IPE.

Dans un 1^{er} temps, on cherche à voir si les poutres treillis peuvent être remplacée par des IPES275.

2.1.1. Faire le schéma mécanique et la descente de charges de cette poutre.

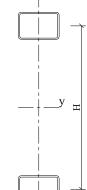
2.1.2. A l'aide des critères ELS $w_{max} \le \frac{1}{200}$ et $w_3 \le \frac{1}{300}$, déterminer l'inertie minimale I_y de cette poutre.

$$\begin{split} q_{ELS} &= 1.5 + 7.5 = 9.00 \text{ kN/m} \\ f_{max} &= \frac{5*(9.00)*18^4}{384*2.1*10^8*I_y} \leq w_{max} = L/200 = 18/200 = 0.090 \text{ m} \\ I_y &\geq \frac{5*(9.00)*18^4}{384*2.1*10^8*0.090} * 10^8 = 65090 \text{ cm}^4 \ \mbox{\Rightarrow} \ \text{IPE 550 (I}_y = 67120 \text{ cm}^4) \end{split}$$

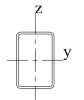

$$q_3 = 7.5 \text{ kN/m}$$

$$\begin{split} f_3 = & \frac{5*(7.5)*18^4}{384*2.1*10^8*I_y} \leq w_3 = L/300 = 18/300 = 0.060 \text{ m} \\ I_y \geq & \frac{5*(7.5)*18^4}{384*2.1*10^8*0.060} * 10^8 = 81362 \text{ cm}^4 \Rightarrow \text{IPE } 600 \text{ (I}_y = 92080 \text{ cm}^4) \end{split}$$

2.1.3. Quel profil du commerce conviendrait?


IPE $600 (I_y = 92080 \text{ cm}^4)$

2.1.4. Faire une coupe de principe transversale de la passerelle avec ce profil (faisant apparaître les éléments porteurs, le garde corps et le platelage bois).



2.2. Poutre treillis.

On retient des membrures en tube rectangulaire 150*100*5 pour les membrures et 100*80*3 pour les diagonales, le tout en S275.

- 2.2.1. Déterminer la hauteur H minimale pour que cette poutre treillis ait la même inertie I_v que celle calculée précédemment.
 - Vous calculerez H à l'aide du théorème de Huygens.
 - Vous négligerez les diagonales dans le calcul de l'inertie (seules les membrures participent à la résistance en flexion).

$$A = 23.4 \text{ cm}^2$$

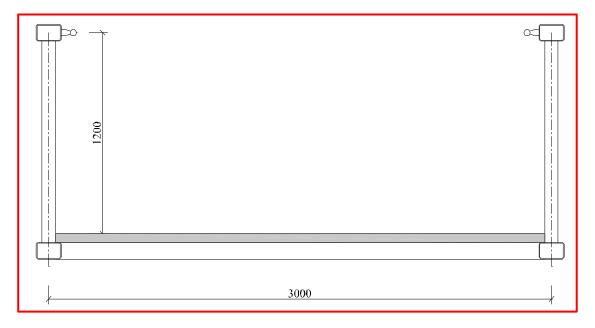
$$A = 23.4 \text{ cm}^2$$

 $I_y = 719.2 \text{ cm}^4$

$$I_z = 384.0 \text{ cm}^4$$

D'après le théorème de Huygens :

$$2 * \left(384 + 23.4 * \left(\frac{H}{2}\right)^2\right) = 81362$$


$$768 + 11.7 * H^2 = 81362$$

$$11.7 * H^2 = 81362 - 768 = 80594$$

$$H^2 = \frac{80594}{11.7} = 6888.4$$

$$H = \sqrt{6888.4} = 83 \text{ cm}$$

2.2.2. Faire une coupe de principe transversale de la passerelle avec la solution poutre treillis.

2.3. Conclusion.

Citer 1 avantages et 1 inconvénients de chaque solution.

Solution	Avantage	Inconvénient
Poutre IPE	Facilité de fabrication	Encombrement sous la passerelle limitant la hauteur de passage des embâcles de la rivière
Poutre treillis	Pas d'encombrement sous la passerelle La poutre treillis peut servir de support à la main courante.	Temps de réalisation